at a
at Tr =
r) R =

= * diffuse
= true;

fl + refr)) &

), N)
efl * E * diffuse
= true;

\AXDEPTH)

survive = SurvivalProbabi
estimation - d

if;

"adiance = Samplelight

2.x + radiance.y + radiance

v = true;

it brdfPdf = EvaluateDiffuse

at3 factor = diffuse * INVPI

at weight = Mis2(directPdf, brdf
ot cosThetaOut = dot(N, L

E * ((weight * cosThetaOut) di

andom walk - done properl
rive)

3t3 brdf = SampleDiffuse(diffuse, N

irvive;

pdf;

1 = E * brdf * (dot(N, R) / pdf);
-ion = true:

INFOMAGR - Advanced Graphics

Jacco Bikker - November 2022 - February 2023

V4

Lecture 13 - “Bidirectiona

Welcome!

<Y1;dr<1!:¢‘\

sy

N 2. 31_))/

Today's Agenda:

= Recap: Forward Path Tracing

= Multiple Importance Sampling
= Virtual Point Lights

e = Photon Mapping

AAXDEPTH)

* Bidirectional Path Tracing
o " More

it brdfPdf = EvaluateDiffuse(L

at3 factor = diffuse * INVPI:

at weight = Mis2(directPdf, brdfr
st cosThetaOut = dot(N, L):

E * ((weight * cosThetaOut) / dire

.
andom walk - done properl m

rive) 4’

. = A |

at3 brdf = SampleDiffuse(diffuse, N 1 ‘V‘

rvive; =

pdf; Q v
1 = E * brdf * (dot(N, R) / pdf); WA S
-ion = true:

sipy

Advanced Graphics - Bidirectional 3

Forward

Backward and Forward Path Tracing

t=2 t=3 t=4 t=5 t=6

): - PEl
~efl * E * diffuse;

= true; S - 2

\AXDEPTH)

survive = SurvivalProbability
estimation - doing it prope

if;

-adiance = SampleLight(&rand, 1, -
2.x + radiance.y + radiance.z)

v = true;

3t brdfPdf = EvaluateDiffuse(L. 11

at3 factor = diffuse * INVPI;

it weight = Mis2(directPdf, brdfPdf

at cosThetaOut = dot(N, L);

E * ((weight * cosThetaOut) / directPds

andom walk - done properly, closely |
rive)

]
3t3 brdf = SampleDiffuse(diffuse, N, r1, 2
irvive;

T (ot N R) / pd)s Images: Simon Brown, sjbrown.co.uk/2011/01/03/two-way-path-tracing

-i0n = true:

Advanced Graphics - Bidirectional 4

Forward

Forward Path Tracing

: Caepth A ‘normal’ path tracer works back to the lights (valid,
R Helmholtz).

T

)

I A light tracer or forward path tracer keeps
it Tr =1 - (RO 4

) R= (0 * mt - 1 the original propagation direction of light:
= * diffuse;

o towards the camera.

fl + refr)) && (depth
), N5

~efl * E * diffuse;
= true;

\AXDEPTH)

survive = SurvivalProbability @
estimation - doing it prope!

if;

-adiance = SampleLight(&rand, 1, -
2.x + radiance.y + radiance.z)

v = true;

3t brdfPdf = EvaluateDiffuse(L, N |

at3 factor = diffuse * INVPI;

it weight = Mis2(directPdf, brdfPdf |
at cosThetaOut = dot(N, L);

E * ((weight * cosThetaOut) / directPd?

andom walk - done properly, closely foll
rive)

3

at3 brdf = SampleDiffuse(diffuse, N, r1, 2
irvive;

pdf;

1 = E * brdf * (dot(N, R) / pdf):

-i0n = true:

https://en.wikipedia.org/wiki/Helmholtz_reciprocity

Advanced Graphics - Bidirectional 5

Forward T

Forward Path Tracing L e .

: gt A ‘normal’ path tracer works back to the lights (valid,

e o Helmbholtz).

s Y

T A light tracer or forward path tracer keeps
R the original propagation direction of light:
e towards the camera.

fl + refr)) 8& (depth

ih Ve - ditruse; Consequences / issues:

= true;

::i:ﬂi SurvivalProbability o ‘Eye, mUSt have an area'

SR T Or: use Next Event Estimation.

H
~adiance = SampleLight(&rand, 1,
2.x + radiance.y + radiance.z)

If the eye sees a mirror, it will be black.
This is a bad idea in an open world scene.
Paths hit random pixels (arowever; on average...).
What if the camera is behind glass?

v = true;

3t brdfPdf = EvaluateDiffuse(L. 11

at3 factor = diffuse * INVPI;

it weight = Mis2(directPdf, brdfPdf |
it cosThetaOut = dot(N, L);

E * ((weight * cosThetaOut) / directPds

O g UL s SCOR IO

andom walk - done properly, closely |
rive)

3

3t3 brdf = SampleDiffuse(diffuse, N, r1, 2
irvive;
pdf;

1 = E * brdf * (dot(N, R) / pdf):

-i0n = true:

https://en.wikipedia.org/wiki/Helmholtz_reciprocity

Advanced Graphics - Bidirectional

Forward

1t = nt
352t = 1
XN D)3
)

it ‘a = nt - nc
it Tr =1 - (RO
) R = (D

= * diffuse:
= true;

=fl + refr)) && (dept!

), N);
efl * E * diffuse;
= true;

\AXDEPTH)

survive = SurvivalProbabilit
estimation - doing it [

if;

"adiance = SampleLight(&rand I
2.x + radiance.y + radiance.z)

v = true;

at brdfPdf = EvaluateDiffuse(L. I

at3 factor = diffuse * INVPI;

at weight = Mis2(directPdf, brdfpds

it cosThetaOut = dot(N, L);

E * ((weight * cosThetaOut) / directPd:

andom walk - done properly, close
rive)

at3 brdf = SampleDiffuse(diffuse, N, r1, =

irvive;
pdf;
1 = E * brdf * (dot(N, R) / pdf);

-ion = true:

Forward Path Tracing

Tracing paths from the light helps when:

= the lightis hard to reach
= the light cannot be importance sampled (using NEE).

Tracing paths from the eye is better when:
= the camera is hard to reach.

Many scenes would benefit from both approaches. Now what?

= decide on a per-pixel basis?
* do both, and average? (would that even work?)

something smarter?

Advanced Graphics - Bidirectional 7
So... a forward path tracer cannot
correctly render a scene in which
Forward Path Tracing the camera directly views pure
specular objects.
Tracing paths from the light helps wh
the light is hard t h Is it possible to construct a scene
= ighti r r
the l'ght g . bo .eac ; that cannot be correctly rendered
= i nn importan .
i s e nOLDC Inportance sa using a backward path tracer?
i Tracing paths from the eye is better when:
;fl + refr)) & .
i = the camera is hard to reach.
';fl *JE * diffuse
- Many scenes would benefit from both approaches. Now what?
;utyive = Surv%valP"cbar:
itane - soplesipe = decide on a per-pixel basis?
2.x + radiance.y + radiance.z
* do both, and average? (would that even work?) o
at brdfPdf = EvaluateDiffuse(L .
e L = something smarter?
st cosThetaOut = dot(N, L):
E * ((weight * cosThetaOut)
andom walk - done properl /{év \ U2\°>\
rive) ;‘_(
; = N =
at3'br€f = SampleDiffuse(diffuse, N \F \/
pdf;) ‘7\)\2)/yy
1 = E * brdf * (dot(N, R) / pdf); e |3

-ion = true:

Advanced Graphics - Bidirectional 8

Forward

1t
), N

)

at a = nt

at Tr = 1
't) R = (D

= * diffuse:
= true;

f1 + refr)) && (de;

), N)
efl * E * diffuse
= true;

\AXDEPTH)

survive = SurvivalProbabili
estimation - doing it

if;

~adiance = SampleLight(&rand
2.x + radiance.y + radiance.z

v = true;

it brdfPdf = EvaluateDiffuse(L

at3 factor = diffuse * INVPI;

it weight = Mis2(directPdf, brdfr
it cosThetaOut = dot(N, L);

E * ((weight * cosThetaOut) / direc

andom walk - done properly, cl
rive)

3t3 brdf = SampleDiffuse(diffuse, N, rl

irvive;

pdf;

1 = E * brdf * (dot(N, R) / pdf);
-ion = true:

Forward Path Tracing
The problem with this scene:

= When a path hits the torus, it can’t use NEE
= This is true for light tracing and path tracing.

The problematic paths are SDS paths™:

E: eye

D: diffuse
S: specular
L: light

(a light tracer fails on L(...)SE paths.)

*: Heckbert, Adaptive radiosity textures for bidirectional ray tracing. SIGGRAPH 1990. m

Advanced Graphics - Bidirectional

Forward

Path Classification

352

-f1 refr &8 (dept
© R s=2 s=3 s=4 s=5 s=6

), N)

efl * E * diffuse; ' it

= true;

\AXDEPTH)

survive = SurvivalProbabilit
estimation - doing it

if;

"adiance = SampleLight(&rand I
2.x + radiance.y + radiance.z)

Il
+

v = true;

at brdfPdf = EvaluateDiffuse(L. I

at3 factor = diffuse * INVPI:

at weight = Mis2(directPdf, brdfpds
it cosThetaOut = dot(N, L);

E * ((weight * cosThetaOut) / directr

5 energy returned by energy returned by energy returned by energy returned by
ey T t = 2,s = 2 paths t = 3,s = 3 paths t = 4,s = 4 paths t = 5,s = 5 paths
;atB_brdf = SampleDiffuse(diffuse, N, r1, - EL n LE EDL = LDE E(D | S)DL

s L(D|S)DE

pdf;
1 = E * brdf * (dot(N, R) / pdf);

-ion = true:

Advanced Graphics - Bidirectional

10

Forward

b [depth

= = inside

it-= nt [/ ine, de
352t =-1.6f - nnt
), N)

)

ta =\nt-— nec, b= nt
3t Te =1 - (RO + (1
r) R = (D * nnt - N
= * diffuse;

= true;

£1 + refr)) 88 (depth - 10
);

* E * diffuse;

\AXDEPTH)

urvive = SurvivalProbability o
imation - doing it propscly

nce = SampleLight(&rand, I, “.

2.x + radiance.y + radiance.z) » ¢ o

v = true;

it brdfPdf = EvaluateDiffuse(L. 1 = =

t3 factor = diffuse * INVPI;

it weight = Mis2(directPdf, brdfPds |
it cosThetaOut = dot(N, L):

E * ((weight * cosThetaOut) / directPdi

andom walk - done properly, closely follo. .

(e

Forward Path Tracing
The problem with this scene:

» The wood inside the ring benefits from NEE
= But sometimes much more energy arrives via the
metal.

Here, NEE correctly samples the direct illumination,
but the indirect illumination (via the metal) is poorly
represented by the cosine pdf.

1S
3t3 brdf = SampleDiffuse(diffuse, N, ri, r2

rvive;

pdf;
1 = E * brdf * (dot(N, R) / pdf):
-i0n = true:

Advanced Graphics - Bidirectional 11

Forward

Today

Paths with high throughput and a low probability yield severe
noise.

), N
)

e = Sometimes it’s better to trace from the light.

it Tr = 1
't) R = (D

= * diffuse:

- true; = Sometimes backward nor forward work well.

of1 + refr)) && (deg

R e - giruse; Bidirectional technigues aim to exploit benefits of both.

= true;

\AXDEPTH)

survive = SurvivalProbabilit
estimation - doing it

if;

“adiance = SampleLight(&rand
2.x + radiance.y + radiance.z

v = true;

it brdfPdf = EvaluateDiffuse(L

at3 factor = diffuse * INVPI;

at weight = Mis2(directPdf, brdfpds
it cosThetaOut = dot(N, L);

E * ((weight * cosThetaOut) / directF

andom walk - done properly, cl
rive)

3t3 brdf = SampleDiffuse(diffuse, N, rl
irvive;

pdf;

1 = E * brdf * (dot(N, R) / pdf);

-ion = true:

Today's Agenda:

= Recap: Forward Path Tracing

= Multiple Importance Sampling
= Virtual Point Lights

e = Photon Mapping

AAXDEPTH)

* Bidirectional Path Tracing
o " More

it brdfPdf = EvaluateDiffuse(L

at3 factor = diffuse * INVPI:

at weight = Mis2(directPdf, brdfr
st cosThetaOut = dot(N, L):

E * ((weight * cosThetaOut) / dire

.
andom walk - done properl m

rive) 4’

. = A |

at3 brdf = SampleDiffuse(diffuse, N 1 ‘V‘

rvive; =

pdf; Q v
1 = E * brdf * (dot(N, R) / pdf); WA S
-ion = true:

sipy

'r) R = (D

= * diffuse
o

fl + refr)) &

), N)

efl * E * diffuse

= true;

AAXDEPTH)

survive = SurvivalProbab
estimation d

if;

"adiance = Samplelight :

2.x + radiance.y + radiance

v = true;

it brdfPdf = EvaluateDiffuse
at3 factor = diffuse * INVPI
at weight = Mis2(directPdf, brdf
at cosThetaOut = dot(N, L):
cosThetaOut) di

E * ((weight *

andom walk - done properl
rive)

Multiple Importance Sampling:

“Multiple Importance Sampling is a technique used in Monte Carlo rendering to
improve the efficiency of rendering scener 'arge number of light sources.

It works by dividing the li~** sourc :int lifferent tegories, such as "direct" and
"Indirect" light sources, & nu ge 3rentse Hling techniques for each
category. Theideaistou. a. = ficik. =arm g technique for the light sources
that are more important fo. e ti age, aiwu a less efficient but still accurate

technique for the less impo. nt sou. ces.

This can lead to a significant reduction in the number of samples required to achieve
a given level of image quality.”

ChatGPT, 2023

3t3 brdf = SampleDiffuse(diffuse, N 1

rvive;
pdf;

R
-ion = tru

brdf * (dot(N, R) / pdf);
rue*

<SRz
y |
Wsiply

N 2. ﬁ_)y

Advanced Graphics - Bidirectional 14

MIS

When Next Event Estimation Fails

| Light sampling: paths to random points on
the light yield high variance.

352t = 1

) Hemisphere sampling (with importance):
e a = o random rays yield low variance.

it Tr = 1 - (RE
'r) R = (D

= * diffuse:
= true;

fl + refr)) && (dept :
), N) ' .

efl * E * diffuse;
= true;

\AXDEPTH)

survive = SurvivalProbabilit
estimation - doing it

if;

"adiance = SampleLight(&rand I
2.x + radiance.y + radiance.z)

v = true;

at brdfPdf = EvaluateDiffuse(L. I

at3 factor = diffuse * INVPI:

at weight = Mis2(directPdf, brdfpds
it cosThetaOut = dot(N, L);

E * ((weight * cosThetaOut) / directr

andom walk - done properly, close
rive)

3t3 brdf = SampleDiffuse(diffuse, N, rl1, r:
irvive;

pdf;

1 = E * brdf * (dot(N, R) / pdf);

-ion = true:

Advanced Graphics - Bidirectional 15

MIS

When Next Event Estimation Fails

Light sampling: paths to random points on
the light yield low variance.

) Hemisphere sampling (with importance):
e a = o random rays yield very high variance.

it Tr = 1 - (RE
') R = (D

= * diffuse:
= true;

fl + refr)) && (dept :
), N) l ’

efl * E * diffuse;
= true;

\AXDEPTH)

survive = SurvivalProbabilit
estimation - doing it

if;

"adiance = SampleLight(&rand I
2.x + radiance.y + radiance.z)

v = true;

at brdfPdf = EvaluateDiffuse(L. I
at3 factor = diffuse * INVPI;

it weight = Mis2(directPdf, brdfPdf
it cosThetaOut = dot(N, L);

E * ((weight * cosThetaout) / directru: ___|

andom walk - done properly, closel
rive)

3t3 brdf = SampleDiffuse(diffuse, N, r1, -
irvive;

pdf;

1 = E * brdf * (dot(N, R) / pdf);

-ion = true:

Advanced Graphics - Bidirectional

MIS

The Cause of Variance

Sampling the function with a constant pdf: correct result, but potentially
a lot of variance.

), N

)

at a = nt
3t Tr = 1
'r) R = (D
= * diffuse:
= true;

of1 + refr)) && (dept

), N)
~efl * E * diffuse;
= true;

\AXDEPTH)

survive = SurvivalProbabilit
estimation - doing it

if;

“adiance = SampleLight(&rand
2.x + radiance.y + radiance.z

v = true;

it brdfPdf = EvaluateDiffuse(L

at3 factor = diffuse * INVPI;

at weight = Mis2(directPdf, brdfpds
it cosThetaOut = dot(N, L);

E * ((weight * cosThetaOut) / directF

andom walk - done properly, cl
rive)

3t3 brdf = SampleDiffuse(diffuse, N, rl
irvive;

pdf;

1 = E * brdf * (dot(N, R) / pdf);

-ion = true:

Advanced Graphics - Bidirectional

MIS

The Cause of Variance

Sampling the function with a pdf proportional to the function itself: correct
result, minimal variance (but: this pdf is generally impossible to obtain).

), N
)
at a = nt

it Tr = 1
't) R = (D

= * diffuse:
= true;

of1 + refr)) && (deg

), N)
~efl * E * diffuse
= true;

\AXDEPTH)

survive = SurvivalProbabilit
estimation - doing it

if;

~adiance = SampleLight(&rand
2.x + radiance.y + radiance.z

v = true;

it brdfPdf = EvaluateDiffuse(L

at3 factor = diffuse * INVPI;

at weight = Mis2(directPdf, brdfpds
it cosThetaOut = dot(N, L);

E * ((weight * cosThetaOut) / directF

andom walk - done properly, cl
rive)

3t3 brdf = SampleDiffuse(diffuse, N, rl
irvive;

pdf;

1 = E * brdf * (dot(N, R) / pdf);

-ion = true:

< TR
e

Advanced Graphics - Bidirectional 18

MIS

The Cause of Variance

We can also use two pdfs, by taking two samples:

= if we keep both samples, we should average them;

) = otherwise, we need to reject one of the samples.

at a = nt
it Tr = 1
'r) R = (D

= * diffuse:
= true;

of1 + refr)) && (dept

), N)
~efl * E * diffuse;
= true;

\AXDEPTH)

survive = SurvivalProbabilit
estimation - doing it

if;

“adiance = SampleLight(&rand
2.x + radiance.y + radiance.z

v = true;

it brdfPdf = EvaluateDiffuse(L

at3 factor = diffuse * INVPI;

at weight = Mis2(directPdf, brdfpds
it cosThetaOut = dot(N, L);

E * ((weight * cosThetaOut) / directF

andom walk - done properly, cl
rive)

3t3 brdf = SampleDiffuse(diffuse, N, rl
irvive;

pdf;

1 = E * brdf * (dot(N, R) / pdf);

-ion = true:

Advanced Graphics - Bidirectional 19

MIS

1t = nt
352t =
), N)
)

at a = nt
it Tr =1 - (F
'r) R = (D

= * diffuse; _1/21-[+1/21T

= true;

of1 + refr)) && (dept A

), N)
efl * E * diffuse;
= true;

\AXDEPTH) '

survive = SurvivalProbabilit
estimation - doing it

if;

"adiance = SampleLight(&rand
2.x + radiance.y + radiance.z

D

Ray one (red), samples the

cos 6

hemisphere, pdf is

—.
Ray two (green-ish), samples the
lights, pdf is constant (1/SA).

v = true;

st brdfPdf = EvaluateDiffuse(L. |

at3 factor = diffuse * INVPI;

it weight = Mis2(directPdf, brdfrPds
it cosThetaOut = dot(N, L);

E * ((weight * cosThetaOut) / directF

andom walk - done properly, clos
rive)

3t3 brdf = SampleDiffuse(diffuse, N, rl
irvive;

pdf;

1 = E * brdf * (dot(N, R) / pdf);

-ion = true:

Advanced Graphics - Bidirectional 20

MIS

Multiple Importance Sampling

We now have two samples that may return direct light:

= the red ray, which is supposed to sample the hemisphere, so we set its weight to 0;
) = the green ray, which has a weight of 1.
- H ' A better blend considers both pdfs.

=fl + refr)) && (dept

), N)
efl * E * diffuse;
= true;

\AXDEPTH) '

survive = SurvivalProbabilit
estimation - doing it

if;

"adiance = SampleLight(&rand
2.x + radiance.y + radiance.z

Ray one (red), samples the

cos 6

hemisphere, pdf is

—.
Ray two (green-ish), samples the
lights, pdf is constant (1/SA).

v = true;

st brdfPdf = EvaluateDiffuse(L. |

at3 factor = diffuse * INVPI;

it weight = Mis2(directPdf, brdfrPds
it cosThetaOut = dot(N, L);

E * ((weight * cosThetaOut) / directF

andom walk - done properly, clos:
rive)

3t3 brdf = SampleDiffuse(diffuse, N, rl
irvive;

pdf;

1 = E * brdf * (dot(N, R) / pdf);

-ion = true:

Advanced Graphics - Bidirectional 21

MIS

Multiple Importance Sampling

We now have two samples that may return direct light:

= the red ray, which is supposed to sample the hemisphere, so we set its weight to 0;
= the green ray, which has a weight of 1.

at a
it Tr = 1
r) R = (D

A better blend considers both pdfs, or rather: both techniques.

= * diffuse
= true;

e 1. Technique 1: hemisphere sampling: %, where 6 depends on the generated cosine-

), N);

‘ 1, . .
efl "€ * diffuse weighted random bounce), or po if we used uniform random sampling;

= true;
1

woPTH) 2. Technique 2: Next Event Estimation, pdf = o
survive = SurvivalProbabil

if;

adiance - SampleLight (irs We can simply average these pdfs: pdf, eragea = W1 pdf1 + w, pdf;,

2.x + radiance.y + radiance.:

4 (which is valid if w; + w, = 1).
at brdfPdf = EvaluateDiffuse(L
at3 factor = diffuse * INVPI:

at weight = Mis2(directPdf, brdfr pl(x)

e Lo Or, we can use the balance heuristic* to calculate the weights: w; =

T p ()P (x) :
andom walk - done properl pl() pZ() /’m

rive)

;t3 brdf = SampleDiffuse(diffuse, N, ri

T *: E. Veach, Robust Monte-Carlo Methods for Light Transport. Ph.D. thesis, 1997. % N
1 = E * brdf * (dot(N, R) / pdf); “I»L-,}L)/
-ion = true:

SOV R2),
A
s Ip W

Advanced Graphics - Bidirectional

22

MIS

Eric Veach to the Rescue

How to make this practical? Wel...
Veach Chapter 9,

“Multiple Importance Sampling”
Section 9.2.2.1, “A simple interpretation
of the balance heuristic”, equation 9.11:

n

PO =) i)

k=1

Here, k iterates over the techniques,
¢, will simply be 1 for our purposes.

=> So: p(x) is simply the sum of the
available pdfs.

Color Sample(Ray ray)

=(1J1)1)JE=(6)@)@);

while (1) // todo: add ‘lastSpecular’

{
.
{
}
}

return E; 44617?6A§
E N
%

I, N, material = Trace(ray);
BRDF = material.albedo / PI;
if (ray.NOHIT) break;
if (material.islLight) break;
// sample a random light source
L, N1, dist, A = RandomPointOnLight();
Ray 1r(I, L, dist);
if (N-L > @ & N1--L > @) if (!Trace(1lr))
{
solidAngle = ((N1--L) * A) / dist?;
lightPDF = 1 / solidAngle;
E+= T * (N-L / lightPDF) * BRDF * lightColor;
}
// continue random walk
R = DiffuseReflection(N);
hemiPDF = 1 / (PI * 2.0f);
ray = Ray(I, R);
T *= ((N-R) / hemiPDF) * BRDF;

Advanced Graphics - Bidirectional

23

MIS

Technique 2: now we hit the light
via the diffuse reflection. Could we

have reached the light with an

at a t
it Tr = 1
r) R = (D

= * diffuse

= true;

2l + refr)) &
), N)

efl * E * diffuse
= true;

Technique 1: light sampling.
Question: is there a technique, with
a pdf, that could have generated the

survive = SurvivalProbal

. 7 same direction on the hemisphere?

"adiance = Samplelight
2.x + radiance.y + radiance.:

AAXDEPTH)

v = true;

e prafeat - senernities - Yes! We could have bounced there

at weight = Mis2(directPdf,

at cosThetaOut = dot(N, L r‘.u = = = . 1
e “lweign - womereone - «With the diffuse reflection; pdf is —

E * ((weight * cosThetaOut)
(in this case). So: we add that pdf to
o3 bror = SampleDiffuse(diffusethe l]ghtPDF

irvive;

pdf;

1 = E * brdf * (dot(N, R) / pdf);
-ion = true:

andom walk - done properl
rive)

alternative technique? Absolutely!

Color Sample(Ray ray)

{

T

=(1J1J1)JE=(6)@)6);

while (1)

{

}

return E;

I, N, material = Trace(ray);
BRDF = material.albedo / PI;
if (ray.NOHIT) break;

if (material.islLight) break;

L, N1, dist, A = RandomPointOnLight();
Ray 1r(I, L, dist);
if (N-L > @ & N1:-L > @) if (!Trace(1r))
{
solidAngle = ((N1--L) * A) / dist?;
lightPDF = 1 / solidAngle;
E+= T * (N-L / lightPDF) * BRDF * lightColor;
}

R = DiffuseReflection(N);
hemiPDF = 1 / (PI * 2.0f);

ray = Ray(I, R);

T *= ((N-R) / hemiPDF) * BRDF;

Advanced Graphics - Bidirectional 24

MIS

)

at a = nt p
it Tr = 1 - (Re)
r) R = (D nn

= * diffuse:
= true;

fl + refr)) && (dept

), N)

efl * E * diffuse;

= true;

AAXDEPTH)

survive = SurvivalProbabilit s 1
estimation - doing it & B : et .
if; R e : : T
-adiance = Samplelight(&rand N L Ha ROt i o | g R)

2.x + radiance.y + radiance.z) St S % : (a2 A St s adass NN/ T Pt A B A ki, 1Y ke BN e :

v = true; N N 3 : s : 7 A S . AV T ST e S P . . 4 e
at brdfPdf = EvaluateDiffuse(L. I B Rt i e A I AT - G SRRSO l BRI T by, . IR

1t3 factor = diffuse * INVPI; S AT C S e e e) e e TS Gl : Rl e I

it weight = Mis2(directPdf, brdfPdf gl TSI A SN 5 : g SN B gl D . A 2 .

it cosThetaOut = dot(N, L);
E * ((weight * cosThetaOut) / directPd:

andom walk - done properly, cle
rive)

3t3 brdf = SampleDiffuse(diffuse, N, r1,
rvive;

pdf;

1 = E * brdf * (dot(N, R) / pdf);

-ion = true:

Advanced Graphics - Bidirectional 25

MIS

)

at a = nt 1€
at Tr = 1 - (Re
r) R = (

= * diffuse:
= true;

1

fl + refr)) && (d

), N);
efl * E * diffuse;
= true; |

survive = SurvivalProbabilit NI . i A S
estimation - doing it L 5 ! S i
if; 3 > ns Y -~ < S r -] .
-adiance = Samplelight(&rand. ! A i 4 7 . - A
2.x + radiance.y + radiance.z) 2 i e Vi s

v = true; ke - 4
it brdfPdf = EvaluateDiffuse(L, U : £ ; . £ AT : DT
at3 factor = diffuse * INVPI; ' 7 oo
3t weight = Mis2(directPdf, brdfPdrf

it cosThetaOut = dot(N, L);

E * ((weight * cosThetaOut) / directPd:

andom walk - done properly,
rive)

3t3 brdf = SampleDiffuse(diffuse, N, r1,
rvive;

pdf;

1 = E * brdf * (dot(N, R) / pdf);

-ion = true:

Advanced Graphics - Bidirectional 26

MIS

)

at a = nt -
T =21 =
r) R = (

= * diffuse:

= true;

fl + refr)) && (dept

), N) -

efl * E * diffuse;
= true;

\AXDEPTH)

survive = SurvivalProbabilit
estimation - doing it

if;

"adiance = SampleLight(&rand
2.x + radiance.y + radiance.z)

v = true;

at brdfPdf = EvaluateDiffuse(L. I

at3 factor = diffuse * INVPI;

it weight = Mis2(directPdf, brdfPdf
it cosThetaOut = dot(N, L);

E * ((weight * cosThetaOut) / directr

andom walk - done properly, closel
rive)

at3 brdf = SampleDiffuse(diffuse, N, rl,
irvive;

pdf;

= E * brdf * (dot(N, R) / pdf):

ion = true:

1
<

Today's Agenda:

= Recap: Forward Path Tracing

= Multiple Importance Sampling
= Virtual Point Lights

e = Photon Mapping

AAXDEPTH)

* Bidirectional Path Tracing
o " More

it brdfPdf = EvaluateDiffuse(L

at3 factor = diffuse * INVPI:

at weight = Mis2(directPdf, brdfr
st cosThetaOut = dot(N, L):

E * ((weight * cosThetaOut) / dire

.
andom walk - done properl m

rive) 4’

. = A |

at3 brdf = SampleDiffuse(diffuse, N 1 ‘V‘

rvive; =

pdf; Q v
1 = E * brdf * (dot(N, R) / pdf); WA S
-ion = true:

sipy

Advanced Graphics - Bidirectional

28

VPLs

3)

at a = nt
at Tr = 1
r) R = (D

= * diffuse
= true;

ofl + refr)) &2

), N)
efl * E * diffuse
= true;

AAXDEPTH)

survive = SurvivalProbabil
estimation - doi

if;

~adiance = SampleLight(&ra
2.x + radiance.y + radiance.:

v = true;
at brdfPdf = EvaluateDiffuse(L
at3 factor = diffuse * INVPI;

at weight = Mis2(directPdf, brdfr

it cosThetaOut = dot(N, L);
E * ((weight * cosThetaOut)

andom walk - done properly
rive)

3t3 brdf = SampleDiffuse(diffuse, N, r

irvive;

pdf;

g
1 = E * brdf * (dot(N, R) / pdf):

-ion = true:

Instant Radiosity*

Idea:

Trace N particles (where N is ~103..10°) from the light sources,

record non-specular hits.

Each recorded hit becomes a virtual point light.

Now, render the scene with rasterization or Whitted-style ray tracing.

At the first diffuse surface, use the VPLs to estimate indirect light, and the lights

themselves for direct illumination.

(did we account for all light transport?)

*: A. Keller, Instant Radiosity. SIGGRAPH ‘97.

Advanced Graphics - Bidirectional 29

VPLs

Instant Radiosity

3 (éeptfl

1t
352
)
)
at

at
)

sur
es
if;
ad
2.x + radiance.y + radiance.z) > ¢ -

v = true;

3t brdfPdf = EvaluateDiffuse(L, N =
t3 factor = diffuse * INVPI:

yt weight = Mis2(directPdf, brdfrds |
it cosThetaOut = dot(N, L):

E-* ((weight * cosThetaOut) / directPdf)

andom walk - done properly, closely foll

rive)

0
at3 brdf = SampleDiffuse(diffuse, N, r1, -2 ©
rvive;

pdf;
1 = E * brdf * (dot(N, R) / pdf):
-i0n = true:

Advanced Graphics - Bidirectional 30

VPLs S

Instant Radiosity

Using VPLs has some interesting characteristics:

1t = nt

s = No noise! Those splotches though...

o = VPLs can bounce: they can represent all indirect light
%o = VPLs cannot represent direct light

= #VPLs < #pixels

AL+ refr)) 8 (dep = Evaluating VPLs can be done with or without occlusion
a1 Ve« atrruse; = VPL visibility can also be evaluated using shadow maps
\AXDEPTH)

e Instant Radiosity is a bidirectional technique:
S;Eiin::d;::,_,;etif::;aiz3] : we propagate flux when placing the VPLs,

e and we propagate importance when connecting to them.

at brdfPdf = EvaluateDiffuse(L. I

at3 factor = diffuse * INVPI;

at weight = Mis2(directPdf, brdfpds

it cosThetaOut = dot(N, L);

E * ((weight * cosThetaOut) / directPd:

andom walk - done properly, closel
rive)

at3 brdf = SampleDiffuse(diffuse, N, r1, = .
e A : Nexander"&;i;
1 = E * brdf * (dot(N, R) / pdf); Uyl 13>

-ion = true:

Today's Agenda:

= Recap: Forward Path Tracing

= Multiple Importance Sampling
= Virtual Point Lights

e = Photon Mapping

AAXDEPTH)

* Bidirectional Path Tracing
o " More

it brdfPdf = EvaluateDiffuse(L

at3 factor = diffuse * INVPI:

at weight = Mis2(directPdf, brdfr
st cosThetaOut = dot(N, L):

E * ((weight * cosThetaOut) / dire

.
andom walk - done properl m

rive) 4’

. = A |

at3 brdf = SampleDiffuse(diffuse, N 1 ‘V‘

rvive; =

pdf; Q v
1 = E * brdf * (dot(N, R) / pdf); WA S
-ion = true:

sipy

Advanced Graphics - Bidirectional

32

Photons

it a = nt - nc
at Tr =1 - (RO
r) R = (D *° nnt

= * diffuse;
= true;

fl + refr)) 8& (depth

), N);
efl * E * diffuse;
= true;

\AXDEPTH)

survive = SurvivalProbability
estimation - doing it p

if;

~adiance = SampleLight(&rand, 1
2.x + radiance.y + radiance.z)

v = true;

it brdfPdf = EvaluateDiffuse(L. N
at3 factor = diffuse * INVPI;

it weight = Mis2(directPdf, brdfPq
it cosThetaOut = dot(N, L):
E * ((weight * cosThetaOut) / dirg

andom walk - done properly, close
rive)

Photon Mapping*

With the photon mapping algorithm, we split rendering in two phases:
= |n phase 1 we deposit flux (®) in the scene by tracing a large number of photons;

= [n phase 2, we estimate illumination using the photon map.

€3 bra = sampleviefuse(aisruse, . . % Henrik Wann Jensen, The photon map in global illumination. Ph.D. dissertation, 1996.

irvive;
pdf;
=E * brdf * (dot(N, R) / pdf):

1
-ion = true:

Advanced Graphics - Bidirectional 33

Photons

Photon Mapping
Phase 1: propagating flux.
Photon emission:

= Point light: emitted in uniformly distributed random directions from the point.

= Area light: emitted from random positions on the square, with directions limited to
a hemisphere. The emission directions are chosen from a cosine distribution.

All photons have the same power: their density is the only way to express varying
brightness.

= [RE. FTIne LusiucLa

andom walk - done properly, cl
rive)

3t3 brdf = SampleDiffuse(diffuse, N, rl
irvive;
pdf;

1 = E *

-10n

brdf * (dot(N, R) / pdf);:
true:*

Advanced Graphics - Bidirectional 34

Photons

Photon Mapping

: Caepth Phase 1: propagating flux.

= = inside
) s Surface interaction:

it‘a =\nt- - nc, b

Tr =1 - (a0 + (3 A photon that hits a surface may get absorbed or

r) R = (D * nnt - N

e, reflected.

= true;

fl + refr)) 8& (depth

), N)
~efl * E * diffuse;
= true;

{AXDEPTH)

survive = SurvivalProbability o
estimation - doing it prope-l

if;

~adiance = Samplelight(&rand,k 1 -
2.x + radiance.y + radiance.z) = o

v = true;

3t brdfPdf = EvaluateDiffuse(L, N |

3t3 factor = diffuse * INVPI;

it weight = Mis2(directPdf, brdfPdf |
at cosThetaOut = dot(N, L);

E * ((weight * cosThetaOut) / directPd’

andom walk - done properly, closely foll
rive)

3

at3 brdf = SampleDiffuse(diffuse, N, r1, 2
irvive;

pdf;

1 = E * brdf * (dot(N, R) / pdf):

-i0n = true:

Advanced Graphics - Bidirectional

Photons

Photon Mapping
Phase 1: propagating flux.

Photon storage:

3)

At each non-specular path vertex we store the photon:

struct photon

fl + refr)) &% {

féfgrl}adm& float3 position; // world space position of the photon hit
’ float3 power; // current power level for the photon

R . float3 L; // incident direction

ﬁl o };

“adiance = SampleLight(&ra
2.x + radiance.y + radiance.:

A photon may be stored multiple times along its path before it gets absorbed. Since

at brdfPdf = EvaluateDiffuse(L
at3 factor = diffuse * INVPI;

€ weight - Hisa(directeds, brits the total set of photons represents the illumination, we divide photon power by the

st cosThetaOut = dot(N, L):

B fisiE & chetm0ut)) divec total number of stored photons.

andom walk - done properly
rive)

3t3 brdf = SampleDiffuse(diffuse, N, r
irvive;

pdf;

1 = E * brdf * (dot(N, R) / pdf);
-ion = true:

Advanced Graphics - Bidirectional

Photons

at a
it Tr = 1
r) R = (D

= * diffuse
= true;

fl + refr)) &

), N)
efl * E * diffuse
= true;

\AXDEPTH)

survive = SurvivalProbabi
estimation - d

if;

"adiance = Samplelight

2.x + radiance.y + radiance

v = true;

st brdfPdf = EvaluateDiffuse

at3 factor = diffuse * INVPI:

at weight = Mis2(directPdf, brdf
it cosThetaOut = dot(N, L);

E * ((weight * cosThetaOut)

andom walk - done properl
rive)

3t3 brdf = SampleDiffuse(diffuse, N
irvive;

pdf;

1 = E * brdf * (dot(N, R) / pdf);
-ion = true:

Photon Mapping

Phase 2: radiance estimation.

In the second pass, we render the scene using rasterization or Whitted-style ray tracing
to find the first diffuse surface; the photon map is then used to estimate illumination.

At each non-specular path vertex we estimate the reflected radiance:

This requires information about the irradiance L;(x, ...) cos 6; arriving over the hemisphere Q,.

We estimate this irradiance by looking at the photons arriving around x:

\Y
1
L 00) = = " £, 0, 06) Py (x, ;)
p=1

<§1;’Th7!:q\;

sy

EUAP

Advanced Graphics - Bidirectional

37

Photons

), N
))
at a = nt

at Tr = 1
) R =/(D

= * diffuse:
= true;

fl + refr)) 22 (d

), N)
efl * E * diffuse
= true;

AAXDEPTH)

survive = SurvivalProbabil
estimation - doi

if;

~adiance = SampleLight(&ra
2.x + radiance.y + radiance.z

v = true;

at brdfPdf = EvaluateDiffuse(L
at3 factor = diffuse * INVPI;

at weight = Mis2(directPdf, brdfr
it cosThetaOut = dot(N, L);

E * ((weight * cosThetaOut) / direc

andom walk - done properly
rive)

3t3 brdf = SampleDiffuse(diffuse, N, r

irvive;

pdf;

1 = E * brdf * (dot(N, R) / pdf);
-ion = true:

Photon Mapping
Phase 2: irradiance estimation®.

We estimate this irradiance by looking at the photon density at x:

N
1
L(x,w,) = —3 z fr (x, Wy, wO)CDp (x, a)p)
p=1

Note:

We gather N photons on a disc of radius .
= We assume that the gathered photons belong to the same surface.
Each photon within radius r has the same influence on the estimate.

*: https://web.cs.wpi.edu/~emmanuel/courses/cs563 /write ups/zackw/photon mappin

PhotonMa

ing.html

https://web.cs.wpi.edu/~emmanuel/courses/cs563/write_ups/zackw/photon_mapping/PhotonMapping.html

Advanced Graphics - Bidirectional 38

Photons

Photon Mapping

: Caepth Algorithm characteristics:

= = insids i
it= nt [/ nc, d
3s2t = 1.6f

T » Low-frequent noise

B = (Can be used in a rasterizer

it Te =1 - (RO + (1

) R= (0 e - = (Can be used for direct + indirect

= * diffuse;

s = Still a bidirectional technique.

fl + refr)) 8& (depth

), N);
~efl * E * diffuse;
= true;

{AXDEPTH)

survive = SurvivalProbability o
estimation - doing it prope-l

if;

-adiance = Samplelight(&rand, 1. .
2.x + radiance.y + radiance.z) = o

v = true;

3t brdfPdf = EvaluateDiffuse(L, N | P
3t3 factor = diffuse * INVPI;

3t weight = Mis2(directPdf, brdfPds |
at cosThetaOut = dot(N, L);

E * ((weight * cosThetaOut) / directPd:

andom walk - done properly, closely foll

rive)

]
at3 brdf = SampleDiffuse(diffuse, N, r1, -2 ©
rvive;

Pdf.-
1 = E * brdf * (dot(N, R) / pdf):
-i0n = true:

Advanced Graphics - Bidirectional

39

Photons

L (depth

= = inside
1t = nt
352t = 1.61
), N)j;

)

it‘a = nt - nc, |
at Tr =1 - (RO 4
r) R = (D * nnt

= * diffuse;
= true;

fl + refr)) && (depth

), N)
~efl * E * diffuse;
= true;

\AXDEPTH)

survive = SurvivalProbability @
estimation - doing it prope!

if;

-adiance = SampleLight(&rand, 1, -
2.x + radiance.y + radiance.z)

v = true;

3t brdfPdf = EvaluateDiffuse(L. 11

at3 factor = diffuse * INVPI;

it weight = Mis2(directPdf, brdfPdf |
at cosThetaOut = dot(N, L);

E * ((weight * cosThetaOut) / directPds

andom walk - done properly, closely fol
rive)

]
3t3 brdf = SampleDiffuse(diffuse, N, r1,

irvive;

pdf;

1 = E * brdf * (dot(N, R) / pdf):
-i0n = true:

Photon Mapping

Algorithm characteristics:

» Low-frequent noise

= (Can be used in a rasterizer

= (Can be used for direct + indirect
[|

Still a bidirectional technique

Can be used to specifically replace paths a path
tracer handles poorly, e.g. caustics.

Today's Agenda:

= Recap: Forward Path Tracing

= Multiple Importance Sampling
= Virtual Point Lights

e = Photon Mapping

AAXDEPTH)

* Bidirectional Path Tracing
o " More

it brdfPdf = EvaluateDiffuse(L

at3 factor = diffuse * INVPI:

at weight = Mis2(directPdf, brdfr
st cosThetaOut = dot(N, L):

E * ((weight * cosThetaOut) / dire

.
andom walk - done properl m

rive) 4’

. = A |

at3 brdf = SampleDiffuse(diffuse, N 1 ‘V‘

rvive; =

pdf; Q v
1 = E * brdf * (dot(N, R) / pdf); WA S
-ion = true:

sipy

Advanced Graphics - Bidirectional 41

BDPT

Multiple Importance Sampling, Briefly

With NEE, we split the domain in direct and indirect illumination for x.
We use a different pdf for each subdomain.

With MIS, we combine the two pdfs:

SR 1. When reaching a light with NEE:

Rt we consider the chance that would have taken
1+ refr)) 88 (de us here via a random bounce.

"E‘irf;f Sl 2. When reaching a light with a random bounce:
s we consider the chance that would have taken
us here via NEE.

o Bidirectional Path Tracing*: '
hn ot~ Evetiatenifruse(|

e i ... Taking this to extremes. '

it cosThetaOut = dot(N, L);
E * ((weight * cosThetaOut) / directF

andom walk - done properly, cl

rive)
3 brdf = sameviffuse(difruze, 1 o %y Bidirectional Path Tracing. Lafortune & Willems, 1993.
1pgfé * brdf * (dot(N, R) / pdf); And: Veach, PhD thesis.

-ion = true:

Advanced Graphics - Bidirectional

42

BDPT

L [dept

= inside
1t = nt
352t = 1.67
), N)
)

at a = nt - nc
it Tr =1 - (RO
'r) R = (D * nnt

= * diffuse;
= true;

fl + refr)) 8& (depth

), N);
efl * E * diffuse;
= true;

\AXDEPTH)

survive = SurvivalProbability
estimation - doing it proj

if;

~adiance = SampleLight(&rand, 1
2.x + radiance.y + radiance.z)

v = true;

it brdfPdf = EvaluateDiffuse(L. N

at3 factor = diffuse * INVPI;

it weight = Mis2(directPdf, brdfPdf |
it cosThetaOut = dot(N, L);

E * ((weight * cosThetaOut) / directPds

andom walk - done properly, closel
rive)

]
3t3 brdf = SampleDiffuse(diffuse, N, r1, 2

irvive;
pdf;
1 = E * brdf * (dot(N, R) / pdf);

-ion = true:

Eye path:

vertex t, (eye)
vertex t;
vertex t,

Connections:

.S ..51-:SQ
to.-S1--So

to--So
to.t1..S..51-.Sg
S-S,
G S

60 15..55..51 .50
§ e 0)..51..5p
.S 0

Light path:

vertex s, (light)
vertex sq
vertex s,

Advanced Graphics - Bidirectional

43

BDPT

1t = nt
352t = 1
XN D)3
)

it ‘a = nt - nc
it Tr =1 - (RO
't) R = (D * nn

= * diffuse:
= true;

=fl + refr)) && (dept!

), N);
efl * E * diffuse;
= true;

\AXDEPTH)

survive = SurvivalProbabilit
estimation - doing it [

if;

"adiance = SampleLight(&rand I
2.x + radiance.y + radiance.z)

v = true;

at brdfPdf = EvaluateDiffuse(L. I

at3 factor = diffuse * INVPI;

at weight = Mis2(directPdf, brdfpds

it cosThetaOut = dot(N, L);

E * ((weight * cosThetaOut) / directPd:

andom walk - done properly, close
rive)

Eye path:

vertex t, (eye)
vertex t;
vertex t,

Connections:

tot1.t2..55..51..5¢ (6)

at3 brdf = SampleDiffuse(diffuse, N, r1, =

irvive;

pdf;

1 = E * brdf * (dot(N, R) / pdf);
-ion = true:

(2)
€)
€)
)
(4)
(4)
(5)
(5)

Light path: Each path of s+¢ vertices can be constructed in
(s +t—1) ways.

In BDPT, paths of the same length are equivalent
techniques to connect the eye to the camera. We
thus combine them using MIS.

vertex s, (light)
vertex sq
vertex s,

Advanced Graphics - Bidirectional

46

BDPT

at a
at Tr
) R =

= * diffuse
= true;

fl + refr))

), N)
efl * E * diffuse
= true;

\AXDEPTH)

survive = SurvivalProba
estimation d

if;

"adiance = Samplelight

2.x + radiance.y + radiance

v = true;

it brdfPdf = EvaluateDiffuse

at3 factor = diffuse * INVPI

at weight = Mis2(directPdf, brdf
at cosThetaOut = dot(N, L):

E * ((weight * cosThetaOut)

andom walk - done proper
rive)

3t3 brdf = SampleDiffuse(diffuse, N

irvive;

pdf;

1 = E * brdf * (dot(N, R) / pdf):

-ion = true:

(a) Bidirectional path tracing with 25 sam-
ples per pixel

(b) Standard path tracing with 56 samples per
pixel (the same computation time as (a))

&

<Y‘;1r)?:q‘;

R}

sy

.A315;>/

Today's Agenda:

= Recap: Forward Path Tracing

= Multiple Importance Sampling
= Virtual Point Lights

e = Photon Mapping

AAXDEPTH)

* Bidirectional Path Tracing
o " More

it brdfPdf = EvaluateDiffuse(L

at3 factor = diffuse * INVPI:

at weight = Mis2(directPdf, brdfr
st cosThetaOut = dot(N, L):

E * ((weight * cosThetaOut) / dire

.
andom walk - done properl m

rive) 4’

. = A |

at3 brdf = SampleDiffuse(diffuse, N 1 ‘V‘

rvive; =

pdf; Q v
1 = E * brdf * (dot(N, R) / pdf); WA S
-ion = true:

sipy

Advanced Graphics - Bidirectional

Path Guiding

The Way of the Photon

Previously in ADVGR:

= We importance sampled

= Aiming for the important samples

* Blending strategies when needed
* (Going bidirectional if all else fails.

Now, what if [told you...

There’s a new way. ©

=1

S
—Yom

om

TO BE CONTINUED

N2
2N

NS

S
4
<

Today's Agenda:

= Recap: Forward Path Tracing

= Multiple Importance Sampling
= Virtual Point Lights

e = Photon Mapping

AAXDEPTH)

* Bidirectional Path Tracing
o " More

it brdfPdf = EvaluateDiffuse(L

at3 factor = diffuse * INVPI:

at weight = Mis2(directPdf, brdfr
st cosThetaOut = dot(N, L):

E * ((weight * cosThetaOut) / dire

.
andom walk - done properl m

rive) 4’

. = A |

at3 brdf = SampleDiffuse(diffuse, N 1 ‘V‘

rvive; =

pdf; Q v
1 = E * brdf * (dot(N, R) / pdf); WA S
-ion = true:

sipy

at a
at Tr =
) R = (D

= * diffuse
= true;

fl + refr)) &

), N)
efl * E * diffuse
= true;

\AXDEPTH)

survive = SurvivalProbab
estimation d

if;

"adiance = Samplelight

2.x + radiance.y + radiance

v = true;

it brdfPdf = EvaluateDiffuse

at3 factor = diffuse * INVPI

at weight = Mis2(directPdf, brdf
at cosThetaOut = dot(N, L):

E * ((weight * cosThetaOut)

andom walk - done properl
rive)

3t3 brdf = SampleDiffuse(diffuse, N

irvive;

pdf;

1 = E * brdf * (dot(N, R) / pdf):

-ion = true:

INFOMAGR - Advanced Graphics

Jacco Bikker - November 2022 - February 2023

END of “Bidirectional”

next lecture: “TAA & ReSTIR”

&

<Y1;dr<1¥j¢‘;

R}

sy

.A31>;>/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53

