at a
at Tr =
r) R =

= * diffuse
= true;

fl + refr)) &

), N )
efl * E * diffuse
= true;

\AXDEPTH)

survive = SurvivalProbabi
estimation - d

if;

"adiance = Samplelight

2.x + radiance.y + radiance

v = true;

it brdfPdf = EvaluateDiffuse

at3 factor = diffuse * INVPI

at weight = Mis2( directPdf, brdf
ot cosThetaOut = dot( N, L

E * ((weight * cosThetaOut) di

andom walk - done properl
rive)

3t3 brdf = SampleDiffuse( diffuse, N

irvive;

pdf;

1 = E * brdf * (dot( N, R ) / pdf);
-ion = true:
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Today's Agenda:

= Recap: Forward Path Tracing

= Multiple Importance Sampling
= Virtual Point Lights

e = Photon Mapping

AAXDEPTH)

* Bidirectional Path Tracing
o " More

it brdfPdf = EvaluateDiffuse( L

at3 factor = diffuse * INVPI:

at weight = Mis2( directPdf, brdfr
st cosThetaOut = dot( N, L ):

E * ((weight * cosThetaOut) / dire

.
andom walk - done properl m

rive) 4’

. = A |

at3 brdf = SampleDiffuse( diffuse, N 1 ‘V‘

rvive; =

pdf; Q v
1 = E * brdf * (dot( N, R ) / pdf); WA S
-ion = true:

sipy
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Forward

Backward and Forward Path Tracing

t=2 t=3 t=4 t=5 t=6

): - PEl
~efl * E * diffuse;

= true; S - 2

\AXDEPTH)

survive = SurvivalProbability
estimation - doing it prope

if;

-adiance = SampleLight( &rand, 1, -
2.x + radiance.y + radiance.z)

v = true;

3t brdfPdf = EvaluateDiffuse( L. 11

at3 factor = diffuse * INVPI;

it weight = Mis2( directPdf, brdfPdf

at cosThetaOut = dot( N, L );

E * ((weight * cosThetaOut) / directPds

andom walk - done properly, closely |
rive)

]
3t3 brdf = SampleDiffuse( diffuse, N, r1, 2
irvive;

T (ot N R) / pd)s Images: Simon Brown, sjbrown.co.uk/2011/01/03/two-way-path-tracing

-i0n = true:
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Forward

Forward Path Tracing

: Caepth A ‘normal’ path tracer works back to the lights (valid,
R Helmholtz).

T

)

I A light tracer or forward path tracer keeps
it Tr =1 - (RO 4

) R= (0 * mt - 1 the original propagation direction of light:
= * diffuse;

o towards the camera.

fl + refr)) && (depth
), N5

~efl * E * diffuse;
= true;

\AXDEPTH)

survive = SurvivalProbability @
estimation - doing it prope!

if;

-adiance = SampleLight( &rand, 1, -
2.x + radiance.y + radiance.z)

v = true;

3t brdfPdf = EvaluateDiffuse( L, N |

at3 factor = diffuse * INVPI;

it weight = Mis2( directPdf, brdfPdf |
at cosThetaOut = dot( N, L );

E * ((weight * cosThetaOut) / directPd?

andom walk - done properly, closely foll
rive)

3

at3 brdf = SampleDiffuse( diffuse, N, r1, 2
irvive;

pdf;

1 = E * brdf * (dot( N, R ) / pdf):

-i0n = true:



https://en.wikipedia.org/wiki/Helmholtz_reciprocity
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Forward T

Forward Path Tracing L e .

: gt A ‘normal’ path tracer works back to the lights (valid,

e o Helmbholtz).

s Y

T A light tracer or forward path tracer keeps
R the original propagation direction of light:
e towards the camera.

fl + refr)) 8& (depth

ih Ve - ditruse; Consequences / issues:

= true;

::i:ﬂi SurvivalProbability o ‘Eye, mUSt have an area'

SR T Or: use Next Event Estimation.

H
~adiance = SampleLight( &rand, 1,
2.x + radiance.y + radiance.z)

If the eye sees a mirror, it will be black.
This is a bad idea in an open world scene.
Paths hit random pixels (arowever; on average...).
What if the camera is behind glass?

v = true;

3t brdfPdf = EvaluateDiffuse( L. 11

at3 factor = diffuse * INVPI;

it weight = Mis2( directPdf, brdfPdf |
it cosThetaOut = dot( N, L );

E * ((weight * cosThetaOut) / directPds

O g UL s SCOR IO

andom walk - done properly, closely |
rive)

3

3t3 brdf = SampleDiffuse( diffuse, N, r1, 2
irvive;
pdf;

1 = E * brdf * (dot( N, R ) / pdf):

-i0n = true:


https://en.wikipedia.org/wiki/Helmholtz_reciprocity
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Forward

1t = nt
352t = 1
XN D)3
)

it ‘a = nt - nc
it Tr =1 - (RO
) R = (D

= * diffuse:
= true;

=fl + refr)) && (dept!

), N );
efl * E * diffuse;
= true;

\AXDEPTH)

survive = SurvivalProbabilit
estimation - doing it [

if;

"adiance = SampleLight( &rand I
2.x + radiance.y + radiance.z)

v = true;

at brdfPdf = EvaluateDiffuse( L. I

at3 factor = diffuse * INVPI;

at weight = Mis2( directPdf, brdfpds

it cosThetaOut = dot( N, L );

E * ((weight * cosThetaOut) / directPd:

andom walk - done properly, close
rive)

at3 brdf = SampleDiffuse( diffuse, N, r1, =

irvive;
pdf;
1 = E * brdf * (dot( N, R ) / pdf);

-ion = true:

Forward Path Tracing

Tracing paths from the light helps when:

= the lightis hard to reach
= the light cannot be importance sampled (using NEE).

Tracing paths from the eye is better when:
= the camera is hard to reach.

Many scenes would benefit from both approaches. Now what?

= decide on a per-pixel basis?
* do both, and average? (would that even work?)

something smarter?
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So... a forward path tracer cannot
correctly render a scene in which
Forward Path Tracing the camera directly views pure
specular objects.
Tracing paths from the light helps wh
the light is hard t h Is it possible to construct a scene
= ighti r r
the l'ght g . bo .eac ; that cannot be correctly rendered
= i nn importan .
i s e nOLDC Inportance sa using a backward path tracer?
i Tracing paths from the eye is better when:
;fl + refr)) & .
i = the camera is hard to reach.
';fl *JE * diffuse
- Many scenes would benefit from both approaches. Now what?
;utyive = Surv%valP"cbar:
itane - soplesipe = decide on a per-pixel basis?
2.x + radiance.y + radiance.z
* do both, and average? (would that even work?) o
at brdfPdf = EvaluateDiffuse( L .
e L = something smarter?
st cosThetaOut = dot( N, L ):
E * ((weight * cosThetaOut)
andom walk - done properl /{év \ U2\°>\
rive) ;‘_(
; = N =
at3'br€f = SampleDiffuse( diffuse, N \F \/
pdf; ) ‘7\)\2 )/yy
1 = E * brdf * (dot( N, R ) / pdf); e |3

-ion = true:
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Forward

1t
), N

)

at a = nt

at Tr = 1
't) R = (D

= * diffuse:
= true;

f1 + refr)) && (de;

), N )
efl * E * diffuse
= true;

\AXDEPTH)

survive = SurvivalProbabili
estimation - doing it

if;

~adiance = SampleLight( &rand
2.x + radiance.y + radiance.z

v = true;

it brdfPdf = EvaluateDiffuse( L

at3 factor = diffuse * INVPI;

it weight = Mis2( directPdf, brdfr
it cosThetaOut = dot( N, L );

E * ((weight * cosThetaOut) / direc

andom walk - done properly, cl
rive)

3t3 brdf = SampleDiffuse( diffuse, N, rl

irvive;

pdf;

1 = E * brdf * (dot( N, R ) / pdf);
-ion = true:

Forward Path Tracing
The problem with this scene:

= When a path hits the torus, it can’t use NEE
= This is true for light tracing and path tracing.

The problematic paths are SDS paths™:

E: eye

D: diffuse
S: specular
L: light

(a light tracer fails on L(...)SE paths.)

*: Heckbert, Adaptive radiosity textures for bidirectional ray tracing. SIGGRAPH 1990. m
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Forward

Path Classification

352

-f1 refr &8 (dept
© R s=2 s=3 s=4 s=5 s=6

), N )

efl * E * diffuse; ' it

= true;

\AXDEPTH)

survive = SurvivalProbabilit
estimation - doing it

if;

"adiance = SampleLight( &rand I
2.x + radiance.y + radiance.z)

Il
+

v = true;

at brdfPdf = EvaluateDiffuse( L. I

at3 factor = diffuse * INVPI:

at weight = Mis2( directPdf, brdfpds
it cosThetaOut = dot( N, L );

E * ((weight * cosThetaOut) / directr

5 energy returned by energy returned by  energy returned by  energy returned by
ey T t = 2,s = 2 paths t = 3,s = 3 paths t = 4,s = 4 paths t = 5,s = 5 paths
;atB_brdf = SampleDiffuse( diffuse, N, r1, - EL n LE EDL = LDE E(D | S)DL

s L(D|S)DE

pdf;
1 = E * brdf * (dot( N, R ) / pdf);

-ion = true:
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Forward

b [depth

= = inside

it-= nt [/ ine, de
352t =-1.6f - nnt
), N )

)

ta =\nt-— nec, b= nt
3t Te =1 - (RO + (1
r) R = (D * nnt - N
= * diffuse;

= true;

£1 + refr)) 88 (depth - 10
);

* E * diffuse;

\AXDEPTH)

urvive = SurvivalProbability o
imation - doing it propscly

nce = SampleLight( &rand, I, “.

2.x + radiance.y + radiance.z) » ¢ o

v = true;

it brdfPdf = EvaluateDiffuse( L. 1 = =

t3 factor = diffuse * INVPI;

it weight = Mis2( directPdf, brdfPds |
it cosThetaOut = dot( N, L ):

E * ((weight * cosThetaOut) / directPdi

andom walk - done properly, closely follo. .

(e

Forward Path Tracing
The problem with this scene:

» The wood inside the ring benefits from NEE
= But sometimes much more energy arrives via the
metal.

Here, NEE correctly samples the direct illumination,
but the indirect illumination (via the metal) is poorly
represented by the cosine pdf.

1S
3t3 brdf = SampleDiffuse( diffuse, N, ri, r2

rvive;

pdf;
1 = E * brdf * (dot( N, R ) / pdf):
-i0n = true:
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Forward

Today

Paths with high throughput and a low probability yield severe
noise.

), N
)

e = Sometimes it’s better to trace from the light.

it Tr = 1
't) R = (D

= * diffuse:

- true; = Sometimes backward nor forward work well.

of1 + refr)) && (deg

R e - giruse; Bidirectional technigues aim to exploit benefits of both.

= true;

\AXDEPTH)

survive = SurvivalProbabilit
estimation - doing it

if;

“adiance = SampleLight( &rand
2.x + radiance.y + radiance.z

v = true;

it brdfPdf = EvaluateDiffuse( L

at3 factor = diffuse * INVPI;

at weight = Mis2( directPdf, brdfpds
it cosThetaOut = dot( N, L );

E * ((weight * cosThetaOut) / directF

andom walk - done properly, cl
rive)

3t3 brdf = SampleDiffuse( diffuse, N, rl
irvive;

pdf;

1 = E * brdf * (dot( N, R ) / pdf);

-ion = true:



Today's Agenda:

= Recap: Forward Path Tracing

= Multiple Importance Sampling
= Virtual Point Lights

e = Photon Mapping

AAXDEPTH)

* Bidirectional Path Tracing
o " More

it brdfPdf = EvaluateDiffuse( L

at3 factor = diffuse * INVPI:

at weight = Mis2( directPdf, brdfr
st cosThetaOut = dot( N, L ):

E * ((weight * cosThetaOut) / dire

.
andom walk - done properl m

rive) 4’

. = A |

at3 brdf = SampleDiffuse( diffuse, N 1 ‘V‘

rvive; =

pdf; Q v
1 = E * brdf * (dot( N, R ) / pdf); WA S
-ion = true:

sipy



'r) R = (D

= * diffuse
o

fl + refr)) &

), N )

efl * E * diffuse

= true;

AAXDEPTH)

survive = SurvivalProbab
estimation d

if;

"adiance = Samplelight :

2.x + radiance.y + radiance

v = true;

it brdfPdf = EvaluateDiffuse
at3 factor = diffuse * INVPI
at weight = Mis2( directPdf, brdf
at cosThetaOut = dot( N, L ):
cosThetaOut) di

E * ((weight *

andom walk - done properl
rive)

Multiple Importance Sampling:

“Multiple Importance Sampling is a technique used in Monte Carlo rendering to
improve the efficiency of rendering scener 'arge number of light sources.

It works by dividing the li~** sourc :int lifferent  tegories, such as "direct" and
"Indirect" light sources, & nu ge 3rentse  Hling techniques for each
category. Theideaistou. a. = ficik. =arm g technique for the light sources
that are more important fo. e ti age, aiwu a less efficient but still accurate

technique for the less impo. nt sou. ces.

This can lead to a significant reduction in the number of samples required to achieve
a given level of image quality.”

ChatGPT, 2023

3t3 brdf = SampleDiffuse( diffuse, N 1

rvive;
pdf;

R
-ion = tru

brdf * (dot( N, R ) / pdf);
rue*

<SRz
y |
Wsiply

N 2. ﬁ_)y
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MIS

When Next Event Estimation Fails

| Light sampling: paths to random points on
the light yield high variance.

352t = 1

) Hemisphere sampling (with importance):
e a = o random rays yield low variance.

it Tr = 1 - (RE
'r) R = (D

= * diffuse:
= true;

fl + refr)) && (dept :
), N ) ' .

efl * E * diffuse;
= true;

\AXDEPTH)

survive = SurvivalProbabilit
estimation - doing it

if;

"adiance = SampleLight( &rand I
2.x + radiance.y + radiance.z)

v = true;

at brdfPdf = EvaluateDiffuse( L. I

at3 factor = diffuse * INVPI:

at weight = Mis2( directPdf, brdfpds
it cosThetaOut = dot( N, L );

E * ((weight * cosThetaOut) / directr

andom walk - done properly, close
rive)

3t3 brdf = SampleDiffuse( diffuse, N, rl1, r:
irvive;

pdf;

1 = E * brdf * (dot( N, R ) / pdf);

-ion = true:
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MIS

When Next Event Estimation Fails

Light sampling: paths to random points on
the light yield low variance.

) Hemisphere sampling (with importance):
e a = o random rays yield very high variance.

it Tr = 1 - (RE
') R = (D

= * diffuse:
= true;

fl + refr)) && (dept :
), N ) l ’

efl * E * diffuse;
= true;

\AXDEPTH)

survive = SurvivalProbabilit
estimation - doing it

if;

"adiance = SampleLight( &rand I
2.x + radiance.y + radiance.z)

v = true;

at brdfPdf = EvaluateDiffuse( L. I
at3 factor = diffuse * INVPI;

it weight = Mis2( directPdf, brdfPdf
it cosThetaOut = dot( N, L );

E * ((weight * cosThetaout) / directru: _________________________________________________________________________________|

andom walk - done properly, closel
rive)

3t3 brdf = SampleDiffuse( diffuse, N, r1, -
irvive;

pdf;

1 = E * brdf * (dot( N, R ) / pdf);

-ion = true:
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MIS

The Cause of Variance

Sampling the function with a constant pdf: correct result, but potentially
a lot of variance.

), N

)

at a = nt
3t Tr = 1
'r) R = (D
= * diffuse:
= true;

of1 + refr)) && (dept

), N )
~efl * E * diffuse;
= true;

\AXDEPTH)

survive = SurvivalProbabilit
estimation - doing it

if;

“adiance = SampleLight( &rand
2.x + radiance.y + radiance.z

v = true;

it brdfPdf = EvaluateDiffuse( L

at3 factor = diffuse * INVPI;

at weight = Mis2( directPdf, brdfpds
it cosThetaOut = dot( N, L );

E * ((weight * cosThetaOut) / directF

andom walk - done properly, cl
rive)

3t3 brdf = SampleDiffuse( diffuse, N, rl
irvive;

pdf;

1 = E * brdf * (dot( N, R ) / pdf);

-ion = true:
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MIS

The Cause of Variance

Sampling the function with a pdf proportional to the function itself: correct
result, minimal variance (but: this pdf is generally impossible to obtain).

), N
)
at a = nt

it Tr = 1
't) R = (D

= * diffuse:
= true;

of1 + refr)) && (deg

), N )
~efl * E * diffuse
= true;

\AXDEPTH)

survive = SurvivalProbabilit
estimation - doing it

if;

~adiance = SampleLight( &rand
2.x + radiance.y + radiance.z

v = true;

it brdfPdf = EvaluateDiffuse( L

at3 factor = diffuse * INVPI;

at weight = Mis2( directPdf, brdfpds
it cosThetaOut = dot( N, L );

E * ((weight * cosThetaOut) / directF

andom walk - done properly, cl
rive)

3t3 brdf = SampleDiffuse( diffuse, N, rl
irvive;

pdf;

1 = E * brdf * (dot( N, R ) / pdf);

-ion = true:

< TR
e
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MIS

The Cause of Variance

We can also use two pdfs, by taking two samples:

= if we keep both samples, we should average them;

) = otherwise, we need to reject one of the samples.

at a = nt
it Tr = 1
'r) R = (D

= * diffuse:
= true;

of1 + refr)) && (dept

), N )
~efl * E * diffuse;
= true;

\AXDEPTH)

survive = SurvivalProbabilit
estimation - doing it

if;

“adiance = SampleLight( &rand
2.x + radiance.y + radiance.z

v = true;

it brdfPdf = EvaluateDiffuse( L

at3 factor = diffuse * INVPI;

at weight = Mis2( directPdf, brdfpds
it cosThetaOut = dot( N, L );

E * ((weight * cosThetaOut) / directF

andom walk - done properly, cl
rive)

3t3 brdf = SampleDiffuse( diffuse, N, rl
irvive;

pdf;

1 = E * brdf * (dot( N, R ) / pdf);

-ion = true:
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MIS

1t = nt
352t =
), N )
)

at a = nt
it Tr =1 - (F
'r) R = (D

= * diffuse; _1/21-[ +1/21T

= true;

of1 + refr)) && (dept A

), N )
efl * E * diffuse;
= true;

\AXDEPTH) '

survive = SurvivalProbabilit
estimation - doing it

if;

"adiance = SampleLight( &rand
2.x + radiance.y + radiance.z

D

Ray one (red), samples the

cos 6

hemisphere, pdf is

—.
Ray two (green-ish), samples the
lights, pdf is constant (1/SA).

v = true;

st brdfPdf = EvaluateDiffuse( L. |

at3 factor = diffuse * INVPI;

it weight = Mis2( directPdf, brdfrPds
it cosThetaOut = dot( N, L );

E * ((weight * cosThetaOut) / directF

andom walk - done properly, clos
rive)

3t3 brdf = SampleDiffuse( diffuse, N, rl
irvive;

pdf;

1 = E * brdf * (dot( N, R ) / pdf);

-ion = true:
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MIS

Multiple Importance Sampling

We now have two samples that may return direct light:

= the red ray, which is supposed to sample the hemisphere, so we set its weight to 0;
) = the green ray, which has a weight of 1.
- H ' A better blend considers both pdfs.

=fl + refr)) && (dept

), N )
efl * E * diffuse;
= true;

\AXDEPTH) '

survive = SurvivalProbabilit
estimation - doing it

if;

"adiance = SampleLight( &rand
2.x + radiance.y + radiance.z

Ray one (red), samples the

cos 6

hemisphere, pdf is

—.
Ray two (green-ish), samples the
lights, pdf is constant (1/SA).

v = true;

st brdfPdf = EvaluateDiffuse( L. |

at3 factor = diffuse * INVPI;

it weight = Mis2( directPdf, brdfrPds
it cosThetaOut = dot( N, L );

E * ((weight * cosThetaOut) / directF

andom walk - done properly, clos:
rive)

3t3 brdf = SampleDiffuse( diffuse, N, rl
irvive;

pdf;

1 = E * brdf * (dot( N, R ) / pdf);

-ion = true:
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MIS

Multiple Importance Sampling

We now have two samples that may return direct light:

= the red ray, which is supposed to sample the hemisphere, so we set its weight to 0;
= the green ray, which has a weight of 1.

at a
it Tr = 1
r) R = (D

A better blend considers both pdfs, or rather: both techniques.

= * diffuse
= true;

e 1. Technique 1: hemisphere sampling: %, where 6 depends on the generated cosine-

), N );

‘ 1, . .
efl "€ * diffuse weighted random bounce), or po if we used uniform random sampling;

= true;
1

woPTH) 2. Technique 2: Next Event Estimation, pdf = o
survive = SurvivalProbabil

if;

adiance - SampleLight ( irs We can simply average these pdfs: pdf, eragea = W1 pdf1 + w, pdf;,

2.x + radiance.y + radiance.:

4 (which is valid if w; + w, = 1).
at brdfPdf = EvaluateDiffuse( L
at3 factor = diffuse * INVPI:

at weight = Mis2( directPdf, brdfr pl(x)

e Lo Or, we can use the balance heuristic* to calculate the weights:  w; =

T p ()P (x) :
andom walk - done properl pl( ) pZ( ) /’m

rive)

;t3 brdf = SampleDiffuse( diffuse, N, ri

T *: E. Veach, Robust Monte-Carlo Methods for Light Transport. Ph.D. thesis, 1997. % N
1 = E * brdf * (dot( N, R ) / pdf); “I»L-,}L)/
-ion = true:

SOV R2),
A
s Ip W
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MIS

Eric Veach to the Rescue

How to make this practical? Wel...
Veach Chapter 9,

“Multiple Importance Sampling”
Section 9.2.2.1, “A simple interpretation
of the balance heuristic”, equation 9.11:

n

PO = ) i)

k=1

Here, k iterates over the techniques,
¢, will simply be 1 for our purposes.

=> So: p(x) is simply the sum of the
available pdfs.

Color Sample( Ray ray )

=(1J1)1)JE=(6)@)@);

while (1) // todo: add ‘lastSpecular’

{
.
{
}
}

return E; 44617?6A§
E N
%

I, N, material = Trace( ray );
BRDF = material.albedo / PI;
if (ray.NOHIT) break;
if (material.islLight) break;
// sample a random light source
L, N1, dist, A = RandomPointOnLight();
Ray 1r( I, L, dist );
if (N-L > @ & N1--L > @) if (!Trace( 1lr ))
{
solidAngle = ((N1--L) * A) / dist?;
lightPDF = 1 / solidAngle;
E+= T * (N-L / lightPDF) * BRDF * lightColor;
}
// continue random walk
R = DiffuseReflection( N );
hemiPDF = 1 / (PI * 2.0f);
ray = Ray( I, R );
T *= ((N-R) / hemiPDF) * BRDF;
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MIS

Technique 2: now we hit the light
via the diffuse reflection. Could we

have reached the light with an

at a t
it Tr = 1
r) R = (D

= * diffuse

= true;

2l + refr)) &
), N )

efl * E * diffuse
= true;

Technique 1: light sampling.
Question: is there a technique, with
a pdf, that could have generated the

survive = SurvivalProbal

. 7 same direction on the hemisphere?

"adiance = Samplelight
2.x + radiance.y + radiance.:

AAXDEPTH)

v = true;

e prafeat - senernities - Yes! We could have bounced there

at weight = Mis2( directPdf,

at cosThetaOut = dot( N, L r‘.u = = = . 1
e “lweign - womereone - «With the diffuse reflection; pdf is —

E * ((weight * cosThetaOut)
(in this case). So: we add that pdf to
o3 bror = SampleDiffuse( diffusethe l]ghtPDF

irvive;

pdf;

1 = E * brdf * (dot( N, R ) / pdf);
-ion = true:

andom walk - done properl
rive)

alternative technique? Absolutely!

Color Sample( Ray ray )

{

T

=(1J1J1)JE=(6)@)6);

while (1)

{

}

return E;

I, N, material = Trace( ray );
BRDF = material.albedo / PI;
if (ray.NOHIT) break;

if (material.islLight) break;

L, N1, dist, A = RandomPointOnLight();
Ray 1r( I, L, dist );
if (N-L > @ & N1:-L > @) if (!Trace( 1r ))
{
solidAngle = ((N1--L) * A) / dist?;
lightPDF = 1 / solidAngle;
E+= T * (N-L / lightPDF) * BRDF * lightColor;
}

R = DiffuseReflection( N );
hemiPDF = 1 / (PI * 2.0f);

ray = Ray( I, R );

T *= ((N-R) / hemiPDF) * BRDF;
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MIS

)

at a = nt p
it Tr = 1 - (Re )
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Today's Agenda:

= Recap: Forward Path Tracing

= Multiple Importance Sampling
= Virtual Point Lights

e = Photon Mapping

AAXDEPTH)

* Bidirectional Path Tracing
o " More
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VPLs
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Instant Radiosity*

Idea:

Trace N particles (where N is ~103..10°) from the light sources,

record non-specular hits.

Each recorded hit becomes a virtual point light.

Now, render the scene with rasterization or Whitted-style ray tracing.

At the first diffuse surface, use the VPLs to estimate indirect light, and the lights

themselves for direct illumination.

(did we account for all light transport?)

*: A. Keller, Instant Radiosity. SIGGRAPH ‘97.
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VPLs

Instant Radiosity
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VPLs S

Instant Radiosity

Using VPLs has some interesting characteristics:

1t = nt

s = No noise! Those splotches though...

o = VPLs can bounce: they can represent all indirect light
%o = VPLs cannot represent direct light

= #VPLs < #pixels

AL+ refr)) 8 (dep = Evaluating VPLs can be done with or without occlusion
a1 Ve« atrruse; = VPL visibility can also be evaluated using shadow maps
\AXDEPTH)

e Instant Radiosity is a bidirectional technique:
S;Eiin::d;::,_,;etif::;aiz3] : we propagate flux when placing the VPLs,

e and we propagate importance when connecting to them.
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= Multiple Importance Sampling
= Virtual Point Lights
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o " More
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Photons
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Photon Mapping*

With the photon mapping algorithm, we split rendering in two phases:
= |n phase 1 we deposit flux (®) in the scene by tracing a large number of photons;

= [n phase 2, we estimate illumination using the photon map.

€3 bra = sampleviefuse( aisruse, . . % Henrik Wann Jensen, The photon map in global illumination. Ph.D. dissertation, 1996.

irvive;
pdf;
=E * brdf * (dot( N, R ) / pdf):

1
-ion = true:
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Photons

Photon Mapping
Phase 1: propagating flux.
Photon emission:

= Point light: emitted in uniformly distributed random directions from the point.

= Area light: emitted from random positions on the square, with directions limited to
a hemisphere. The emission directions are chosen from a cosine distribution.

All photons have the same power: their density is the only way to express varying
brightness.

= [RE. FTIne LusiucLa

andom walk - done properly, cl
rive)

3t3 brdf = SampleDiffuse( diffuse, N, rl
irvive;
pdf;

1 = E *

-10n

brdf * (dot( N, R ) / pdf);:
true:*
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Photons

Photon Mapping

: Caepth Phase 1: propagating flux.

= = inside
) s Surface interaction:

it‘a =\nt- - nc, b
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Photons

Photon Mapping
Phase 1: propagating flux.

Photon storage:

3)

At each non-specular path vertex we store the photon:

struct photon

fl + refr)) &% {

féfgrl}adm& float3 position; // world space position of the photon hit
’ float3 power; // current power level for the photon

R . float3 L; // incident direction

ﬁl o };

“adiance = SampleLight( &ra
2.x + radiance.y + radiance.:

A photon may be stored multiple times along its path before it gets absorbed. Since

at brdfPdf = EvaluateDiffuse( L
at3 factor = diffuse * INVPI;

€ weight - Hisa( directeds, brits the total set of photons represents the illumination, we divide photon power by the

st cosThetaOut = dot( N, L ):

B fisiE & chetm0ut) ) divec total number of stored photons.

andom walk - done properly
rive)

3t3 brdf = SampleDiffuse( diffuse, N, r
irvive;

pdf;

1 = E * brdf * (dot( N, R ) / pdf);
-ion = true:
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Photons
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1 = E * brdf * (dot( N, R ) / pdf);
-ion = true:

Photon Mapping

Phase 2: radiance estimation.

In the second pass, we render the scene using rasterization or Whitted-style ray tracing
to find the first diffuse surface; the photon map is then used to estimate illumination.

At each non-specular path vertex we estimate the reflected radiance:

This requires information about the irradiance L;(x, ...) cos 6; arriving over the hemisphere Q,.

We estimate this irradiance by looking at the photons arriving around x:

\Y
1
L 00) = = " £, 0, 06) Py (x, ;)
p=1

<§1;’Th7!:q\;

sy

EUAP
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Photons
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Photon Mapping
Phase 2: irradiance estimation®.

We estimate this irradiance by looking at the photon density at x:

N
1
L(x,w,) = —3 z fr (x, Wy, wO)CDp (x, a)p)
p=1

Note:

We gather N photons on a disc of radius .
= We assume that the gathered photons belong to the same surface.
Each photon within radius r has the same influence on the estimate.

*: https://web.cs.wpi.edu/~emmanuel/courses/cs563 /write ups/zackw/photon mappin

PhotonMa

ing.html


https://web.cs.wpi.edu/~emmanuel/courses/cs563/write_ups/zackw/photon_mapping/PhotonMapping.html
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Photons

Photon Mapping
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Photons
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Photon Mapping

Algorithm characteristics:

» Low-frequent noise

= (Can be used in a rasterizer

= (Can be used for direct + indirect
[ |

Still a bidirectional technique

Can be used to specifically replace paths a path
tracer handles poorly, e.g. caustics.




Today's Agenda:

= Recap: Forward Path Tracing

= Multiple Importance Sampling
= Virtual Point Lights

e = Photon Mapping
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o " More
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BDPT

Multiple Importance Sampling, Briefly

With NEE, we split the domain in direct and indirect illumination for x.
We use a different pdf for each subdomain.

With MIS, we combine the two pdfs:

SR 1. When reaching a light with NEE:

Rt we consider the chance that would have taken
1+ refr)) 88 (de us here via a random bounce.

"E‘irf;f Sl 2. When reaching a light with a random bounce:
s we consider the chance that would have taken
us here via NEE.

o Bidirectional Path Tracing*: '
hn ot~ Evetiatenifruse( |

e i ... Taking this to extremes. '

it cosThetaOut = dot( N, L );
E * ((weight * cosThetaOut) / directF

andom walk - done properly, cl

rive)
3 brdf = sameviffuse( difruze, 1 o %y Bidirectional Path Tracing. Lafortune & Willems, 1993.
1pgfé * brdf * (dot( N, R ) / pdf); And: Veach, PhD thesis.

-ion = true:
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BDPT
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Eye path:

vertex t, (eye)
vertex t;
vertex t,

Connections:

.S ..51-:SQ
to.-S1--So

to--So
to.t1..S..51-.Sg
S-S,
G S

60 15..55..51 .50
§ e 0)..51..5p
.S 0

Light path:

vertex s, (light)
vertex sq
vertex s,
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BDPT
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Eye path:

vertex t, (eye)
vertex t;
vertex t,

Connections:

tot1.t2..55..51..5¢ (6)

at3 brdf = SampleDiffuse( diffuse, N, r1, =

irvive;

pdf;

1 = E * brdf * (dot( N, R ) / pdf);
-ion = true:

(2)
€)
€)
)
(4)
(4)
(5)
(5)

Light path: Each path of s+¢ vertices can be constructed in
(s +t—1) ways.

In BDPT, paths of the same length are equivalent
techniques to connect the eye to the camera. We
thus combine them using MIS.

vertex s, (light)
vertex sq
vertex s,
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BDPT
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(a) Bidirectional path tracing with 25 sam-
ples per pixel

(b) Standard path tracing with 56 samples per
pixel (the same computation time as (a))

&
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Path Guiding

The Way of the Photon

Previously in ADVGR:

= We importance sampled

= Aiming for the important samples

* Blending strategies when needed
* (Going bidirectional if all else fails.

Now, what if [ told you...

There’s a new way. ©

=1

S
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TO BE CONTINUED
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INFOMAGR - Advanced Graphics

Jacco Bikker - November 2022 - February 2023

END of “Bidirectional”

next lecture: “TAA & ReSTIR”
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